美國德州大學奧斯汀分院最早于1986年提出SLS的專利,由DTM公司提供商用設備,美國麻省理工1988年提出DMLS的概念和專利,但目前商用化設備主要的供應商都來源于歐洲,德國EOS略占優勢,MTT公司和ConceptLaser公司也具有很強的競爭力。中國于1998年以后開始開展SLS方面的研究,2000年以后,隨著商品化光纖激光器的成熟,國內在SLS方面取得一定成果,2004年起,有至少3家公司和單位提出SLS技術應用化的專利,在航空領域因材料強度方面的問題,早期的應用主要在快速建立冶金應用模具方面。
件的成形應力控制方面進展,開始向大型構件激光成形方面擴張,目前最大加工零件可達約5平米,居世界領先地位,與美國、歐洲等站在同一起跑線,目前商用領域已經有10001000X1000MM加工能力的設備銷售,更大的加工尺度的產品可以定制。
3D打印概念的出現是一種制造工業領域革命性的新技術,目前的諸多成形手段和方法都有各自的具體優點和缺陷,在航空領域,選擇燒結SLS技術看起來潛力最大,應用前景最廣泛,它的材料適應范圍最廣,從鋁合金、鈦合金、高強度鋼、高溫合金到陶瓷都能處理,但是它屬于微觀粉末冶金的范疇,快速成形中,粉末冶金技術中因熔融——凝固過程過快,成形體中容易夾雜空穴,未完全熔融的粉末,胚體缺陷還有可能包括激光掃描線方向形成的熔融——凝固不均勻金相微觀線狀晶格排列,這些都會嚴重影響了成形件的強度。
目前激光選區成形的構件大多都只能達到同牌號金屬鑄造的強度水平,雖然這已經能讓構件進入正常的應用領域,但顯然要承擔象飛機這樣的主要結構受力構件還是有很大限制的。
3D金屬打印零件表面還需進一步機械加工
直接金屬激光燒結DMLS技術因為直接用激光熔融金屬絲沉積,金屬本身是致密體重熔,不易產生粉末冶金那樣的成形時的空穴,這個技術生產的構件致密度可達99%以上,接近鍛造的材料胚體,目前國際國內都主要利用這種技術制造高受力構件,它能達到同牌號金屬最高強度的90~95%左右的水平,接近一般鍛造構件。
目前的金屬3D打印構件都不能直接形成符合要求的零件表面,它都必須經過表面的機械加工,去除表面多余的,不連續的,不光滑的金屬,才能作為最終使用的零件,因此,盡管3D打印可以獲得復雜的空間結構和一些復雜的管路和腔體,但是這些管路和腔體的機械加工很有可能無法進行,其零件的重量效率,管路流動效率等方面不一定能夠滿足實際需求,因此,盡管3D打印可能能一步直接完成很多復雜零件的成形,但其還不具備直接取代傳統機械加工的能力。
3D打印對飛機大型構件制造還存在問題
直接成形的金屬零件在生產過程中因為反復經受局部接近熔點溫度受熱,內部熱應力狀態復雜,在成形某些大型細長體,薄壁體金屬構件時,應力處理和控制還不能滿足要求,實際上到目前為止一直影響3D打印在航空業的應用也正是因為這個原因。
美國從1992年開始就不斷利用這類技術希望能夠直接生產飛機用的大型框架,粱絎,整體壁板等,正是因為應力復雜,大型構件成形過程中或成形后會產生嚴重變形,嚴重到無法使用。所以3D打印技術盡管很早就出現了,但國外航空工業界還持有相當的保守態度也是有原因的。